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Motivation: Traditional metrics such as sharpness 
(MTF or SFR) and noise, taken by themselves, are not 
adequate for predicting Machine Vision/Artificial 
Intelligence (MV/AI) system performance. 

We describe new metrics, based on camera 
information capacity, that are superior predictors of 
system performance.
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Outline of the talk

• Review: what is information and how is it measured?

• Define information metrics and show how they are calculated.

• Key image information metrics

• SNRi: Independent observer SNR (for object detection)

• Edge Location σ: uncertainty of edge location (for edge detection)

• Matched filter for optimizing MV/AI system performance

• Examples showing effects of illumination and image processing 
(filtering)
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We are working on incorporating the new metrics into ISO 23654, 
Photography — Digital cameras — Image Information Metrics. Your 

participation is encouraged. The next meeting is June 11-14 in New York.



Information, defined by Claude Shannon in 1948, is a measure of the resolution 
of uncertainty. It is the basis of all electronic communications.

For a system with S possible states, s1, …, sn, with probabilities p(sn), information 
can be represented as entropy, 𝑯 𝑺 = σ𝒊=𝟏

𝒏 𝒑 𝒔𝟏 𝐥𝐨𝐠𝟐(𝟏/𝒑 𝒔𝟏 ). Log2 is the key.

The number of states S is closely related to the Signal-to-Noise Ratio (S/N or 

SNR) of a continuous system. 

Electronic channels — including cameras — can be characterized by a channel 

capacity, C (the maximum rate that information that can be transmitted without 

error), calculated from the Shannon-Hartley equation.

The key performance indicators for MV/AI systems are closely related to C.
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Information concepts

units are bits/pixel or bits/image.
Inputs are bandwidth, W, 

average signal power, S, and
noise power, N. 

𝑪 = 𝑾 𝒍𝒐𝒈𝟐 𝟏 +
𝑺

𝑵
= න

𝟎

𝑾

log𝟐 𝟏 +
𝑺(𝒇)

𝑵(𝒇)
𝒅𝒇



• Adds each shifted scan line to one of four bins to obtain a 4x 
oversampled averaged edge, 𝑉 𝑥 = 𝜇𝑠(𝑥), shown on the 
right, which is used to calculate MTF and information metrics.

This effectively reduces noise by samples in each bin. 

Best results are obtained when edge ROI length ≥ 100 pixels. [e.g., 

100 pixels in 4 bins (25 per bin) reduces noise by 25 ≈ 5.]
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Information capacity from the slanted edge
The key to conveniently calculating information capacity, C,

is to measure signal and noise in the same location. 

This can be accomplished with the widely used slanted edge test 
pattern, which is a part of the ISO 12233 standard. It's fast and compact 
enough to map MTF over an entire image. The ISO algorithm
• Linearizes the image, 

• Finds the center of each scan line,

• Fits the centers to a polynomial, 



N. Koren:    New camera quality measurements for machine vision   May 2024 rev. June 2024 P 5

Measuring noise from the slanted edge
To obtain the spatially dependent noise power for calculating C, 

N(x), measured at the same location as the signal,

Sum the squares of each scan line to find the variance, σs
2(x) = N(x),

Spatially dependent noise power 𝑵(𝒙) = 𝝈𝒔
𝟐 𝐱 =

𝟏

𝑳


𝒍=𝟎

𝑳−𝟏

𝒚𝒍
𝟐 𝐱 − 𝝁𝒔

𝟐(𝒙) ∗

Noise amplitude  𝝈𝒔 𝒙 = 𝑵 𝒙 can now be viewed. Examples:

N(x) does not fully characterize the noise. We still need to
calculate the Noise Power (Wiener) Spectrum.

*N(x) is the mean of the squares minus the square of the mean, for each point x.

Uniformly-processed                        Bilateral-filtered  

N(x) can look very
different for different 

types of image 
processing.



Noise amplitude  𝝈𝒔 𝒙 = 𝑵(𝒙)

A peak in N(x) indicates
bilateral (nonuniform)

filtering. 
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Noise power N(x) for calculating information capacity, C
depends on the detected image processing type

Uniformly or minimally processed
Unsharpened or uniformly sharpened. No noise 
reduction

Little or no noise peak. 

C is calculated from 𝑵 = mean 𝑵 𝒙 .

Most  accurate calculation; best for camera 
performance. 

Required for calculating image information 
metrics.

Bilateral-filtered
Sharpened near the edge; noise-reduced 
elsewhere.  Most JPEG images from consumer 
cameras

Identified by distinct noise peak

C is calculated from the smoothed noise power 
at the peak, where MTF is calculated.
N = Npeak-smooth. 

Less accurate than uniformly processed.



Signal power for calculating information capacity C

The Shannon-Hartley equation uses the mean
signal power, 𝑺𝒎𝒆𝒂𝒏 𝒇 , to calculate C. 

Information capacity is maximum when the signal 
is uniformly-distributed over VP-P . 

Mean signal power 𝑺𝒎𝒆𝒂𝒏 𝒇 ൗ= 𝑽𝒑−𝒑 𝑴𝑻𝑭(𝒇)
𝟐
𝟏𝟐

The three factors, Smean, N, and bandwidth 𝑾 = 𝒇𝑵𝒚𝒒 = 𝟎. 𝟓 𝐂/𝐏 are entered 
into the Shannon-Hartley equation. 

Information capacity = 𝑪 = න
𝟎

𝑾

log𝟐 𝟏 +
𝑺𝒎𝒆𝒂𝒏(𝒇)

𝑵
𝒅𝒇 ≅ 

𝒊=𝟎

𝟎.𝟓/∆𝒇

log𝟐 𝟏 +
𝑺𝒎𝒆𝒂𝒏 𝒊∆𝒇

𝑵
∆𝒇
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VP-P   

Vmax

Vmin   

Vmea

n



Calculating information capacity Cn and Cmax

Since C4 is strongly dependent on chart contrast 
ratio and exposure, we have developed a more stable metric, Maximum infor-

mation capacity, Cmax , by extrapolating Vp-p to 𝑉𝑚𝑎𝑥 = 1 (the maximum allowed 
value) and adjusting the noise, which can be challenging for HDR sensors.
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The measured value of C is a strong function of the 
chart contrast ratio as well as the exposure.

For this reason, we recommend specifying the chart 
contrast ratio when reporting C, for example, C4 for 
widely used ISO standard 4:1 contrast charts. 

Cmax

C4

TIFF

Uniformly 

processed

JPEG

Cmax is a stable measurement, nearly independent of exposure, that can be 
used to characterize cameras, but

C4 is useful for characterizing camera performance as a function of exposure.



Information capacity displays for C4 and Cmax
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The 3D plot shows Cmax
mapped over the image.

Mean(Cmax) = 2.96 b/p.

Total info capacity CmaxTotal =  mean(Cmax) * 
number of pixels = 47.23 Mb

C4 and Cmax are displayed
in the Edge/MTF plot.

Information capacities 
C4 = 2.36 b/p; Cmax = 3.75 b/p.



C4 and Cmax results for three cameras

In auto-exposure cameras that keep image Digital Numbers (DNs) constant,
Exposure Index (EI) (sometimes called ISO speed) is proportional to analog gain, Hence 

illumination and SNR decreases as Exposure Index (EI) increases.

C4 and Cmax decrease with Exposure Index (EI).
C4 and Cmax increase with pixel size, as expected.

Sensors: 4.5 µm BSI, 3.88 µm, 2.14 µm
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Cmax is larger than C4 by roughly 2 bits/pixel.

Cmax

1

2

3

Exposure Index →

C4

1

2

3

Exposure Index →

4.5 µm BSI

3.88 µm

2.14 µm



Sharpening and information capacity

Uniform Sharpening has little effect on C
because it boosts the high frequency signal 

and noise by the same amount.
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Cmax = 
3.82 b/p

C is unaffected by linear, 
reversable image processing.

For this reason, it is not useful for 
finding optimum image processing.

The image information metrics, to be 
described in the following slides (espe-
cially SNRi and Edge Location σ), serve 
this purpose because

• They are sensitive to image 
processing, and

• they measure how well objects and 
edges are detected.

Minimally processed TIFF USM-sharpened TIFF

Cmax = 
3.81 b/p

Radius = 2

Amt = 2
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The key image information metrics
are derived from MTF and the Noise Power (Wiener) spectrum of the noise image.

To obtain the noise image
Note that the oversampled image consists of four averaged interleaves 

from the original bins of the ISO 12233 calculation.

De-bin the image by moving the low-noise contents of each interleave back 
to their original locations. 

The de-binned image (2) has much lower noise than the original (1).

Noise image (3) = original image (1) – de-binned image (2).

(1)                             (2)                  (3) Noise image =
Original                 De-binned         original – de-binned 

Micro 4/3 camera 
@ ISO 12800

The noise (which 
has a mean of 0) 
image is shown 

lightened.



Key image information metrics are derived from the noise image

• Noise Power Spectrum (NPS)

• Noise Equivalent Quanta (NEQ) — a frequency-dependent SNR used in metical imaging

• Information capacity, CNEQ , derived from NEQ

• Ideal observer Signal-to-Noise Ratio (SNRi) —
detectability of small objects (whether it is present).

• Edge SNRi & Edge Location σ (standard deviation) —
accuracy of object location (shape and position).
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Additional metrics (will not be covered in detail)

• Detective Quantum Efficiency (DQE) — derived from NEQ

• Noise Autocorrelation — may indicate sensor crosstalk

• Object visibility — of small/low contrast objects, shown on the right. 
Derived from SNRi.



Noise Power (Wiener) Spectrum NPS( f )

Parseval’s theorem

The 2D Fourier Transform (FFT) of the noise image must be transformed into 1D.

• Noting that f = 0 at the center of the 2D FFT image (from MATLAB fft2 and fftshift), divide it 
into several annular regions, and find the average noise power for each region. 

• Because this procedure does not maintain the invariance in energy between the spatial and 
frequency domains implied by Parseval’s theorem, 

Normalize NPS(f) so that 𝑵𝑷𝑺 𝒇 𝒅𝒇 = 𝝈𝟐 𝒙 𝒅𝒙 = 𝑵 𝒙 𝒅𝒙
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f (C/P) →

NPS(f)

The noise amplitude (voltage) spectrum is

𝑵𝑽 𝒇 = 𝑵𝑷𝑺(𝒇)

NPS( f ) is a part of the kernel that 
defines image information metrics, 

𝑲 𝒇 = 𝑴𝑻𝑭𝟐 𝒇 /𝑵𝑷𝑺 𝒇 .

https://en.wikipedia.org/wiki/Parseval%27s_theorem


N. Koren:    New camera quality measurements for machine vision   May 2024 rev. June 2024 P 15

NEQ( f ) Frequency-dependent Signal-to-Noise 
(power) Ratio, equivalent to the number of 
quanta that would generate the measured SNR 
when photon shot noise is dominant. Used in 
medical imaging.

𝑵𝑬𝑸 𝒇 =
𝑽𝒎𝒆𝒂𝒏
𝟐 𝑴𝑻𝑭𝟐(𝒇)

𝑵𝑷𝑺(𝒇)
= 𝑽𝒎𝒆𝒂𝒏

𝟐 𝑲(𝒇)

NEQ

Noise Equivalent Quanta NEQ( f )

𝑲 𝒇 = 𝑴𝑻𝑭𝟐 𝒇 /𝑵𝑷𝑺 𝒇 is the kernel (the defining factor) of the 
image information metrics to be introduced.

Because uniform filtering affects MTF2(f) and NPS(f) identically, 
NEQ( f ) and K( f ) are not affected by uniform, reversable filtering

such as sharpening or lowpass filtering. 



Calculations derived from NEQ( f )

An information capacity, CNEQ , can be calculated from NEQ(f) by substituting
𝑉𝑃−𝑃/ 12 (for a uniform distribution) for Vmean.
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𝑪𝑵𝑬𝑸 = න
𝟎

𝒇𝑵𝒚𝒒

𝒍𝒐𝒈𝟐(𝟏 +𝑵𝑬𝑸𝒊𝒏𝒇𝒐 𝒇 ) 𝒅𝒇

CNEQ can be thought of as a 
summary metric for NEQ( f ). 

Results are close to C from edge 
variance; they differ because CNEQ
includes the noise spectrum.

Detective Quantum Efficiency, DQE(f), is the ratio of NEQ(f)
(the number of quanta equivalent to the measured SNR) to the 
mean number of incident quanta. It has maximum value of 1.

𝐷𝑄𝐸 𝑓 =
𝑁𝐸𝑄(𝑓)

𝑞

Under development.



Ideal Observer Signal-to-Noise Ratio SNRi

SNRi is metric for the detectability of objects, calculated for w × kw rectangles. 
For ∆𝑔 𝑥, 𝑦 = ∆𝑄 ∙ rect Τ𝑥 𝑤 ∙ rect( Τ𝑦 𝑘𝑤),
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The Fourier transform of ∆𝑔 𝑥, 𝑦 is

𝐹𝐹𝑇 ∆𝑔 𝑥, 𝑦 = 𝐺 𝑓𝑥, 𝑓𝑦 = 𝑘𝑤2∆𝑄
sin 𝜋𝑤𝑓𝑥
𝜋𝑤𝑓𝑥

sin 𝜋𝑘𝑤𝑓𝑦

𝜋𝑘𝑤𝑓𝑦

𝑆𝑁𝑅𝑖2 = 0
𝑓𝑦𝑁𝑦𝑞

0
𝑓𝑥𝑁𝑦𝑞 |𝐺 𝑓𝑥, 𝑓𝑦 |2 𝑲(𝒇) 𝑑𝑓𝑥 𝑑𝑓𝑦 where 𝑓 = 𝑓𝑥

2 + 𝑓𝑦
2

Rescued by Paul Kane from ICRU Report 54 (an obscure 
medical imaging document that correlates SNRi with 
Bayesian detection statistics).

In spatial domain, SNRi2 is the total energy of the object 
S/N:  related to object visibility. 

SNRi is proportional to the Michelson contrast of the chart 
((lt–dk)/(lt+dk)) (0.6 for 4:1 contrast ratio).

Feature size w  in pixels → 

SNRi plots can be difficult to interpret because they strongly increase with w. 

https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/


SNRi per pixel
a better way of displaying SNRi

SNRi — the metric for the 
detectability of objects — is 
difficult to interpret because it 
increases with object size.
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Feature size w  in pixels → 

SNRi in units of SNR per distance 
(pixels) is easier to grasp because it 
approaches a limit.

Feature size w  in pixels → 

Note that the 
y-axis scales 

are very 
different.

We expect SNRi to be predictive of the key machine vision 
performance metric, Mean Average Precision, mAP.

https://www.v7labs.com/blog/mean-average-precision


Edge SNRi
Edge SNRi, is new metric for the 
detectability of edge location or object shape. 

Similar to SNRi, with the object replaced by the edges 
(the gradient of the object), which forms Line Spread 
Function doublets (pairs opposite-polarity δ-functions spaced by w).
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∆ℎ 𝑥, 𝑦 = 𝑉𝑃−𝑃 ∙ 𝐼𝐼 Τ𝑥 𝑤 ∙ 𝐼𝐼 Τ𝑦 𝑘𝑤 ;

Edge Location σ, derived from Edge SNRi, is our preferred 
metric for evaluating system performance (next slide). 

In spatial domain, Edge SNRi2 is the energy of the LSF 
doublets. 

Affected by filtering (ISP). Feature size w  in pixels → 

𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2 =ඵ 𝐻(𝑓𝑥, 𝑓𝑦)
2
𝑲(𝒇) 𝑑𝑓𝑥 𝑑𝑓𝑦

𝐹𝐹𝑇 ∆ℎ 𝑥, 𝑦 = 𝐻 𝑓𝑥, 𝑓𝑦 = 𝜋2𝑓𝑥 𝑓𝑦 𝐺(𝑓𝑥, 𝑓𝑦) = 2 𝑉𝑃−𝑃 sin 𝜋𝑤𝑓𝑥 sin 𝜋𝑘𝑤𝑓𝑦



Edge Location σ

Edge Location Standard Deviation (σ) is metric 
for the detectability of edge location or object 
shape. Lower is better.
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𝑬𝒅𝒈𝒆 𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝝈 =
𝟏

𝑬𝒅𝒈𝒆 𝑺𝑵𝑹𝒊

Edge Location σ has units of pixels (but 
can be converted to object distance, angle, 
etc.). Affected by filtering (ISP). Can be 
used to design matched filters to optimize 
location (shape) detection.

It is our preferred metric for evaluating 
system performance. 

We expect it to be predictive of machine 
vision performance metric, IoU. Feature size w  in pixels → 

Lower is better.

https://www.v7labs.com/blog/mean-average-precision


Optimum filtering: the matched filter

A custom filter that maximizes the object or edge detection performance for a 
specific system. Originally developed for radar. Described in ICRU Report 54 (an obscure medical 
imaging document that connects SNRi with Bayesian detection statistics).

Matched filters optimize a single metric: SNRi or Edge Location σ for a specific object width w. 

If the matched filter transfer function (below) is known, it can be approximated by a lowpass filter 
(Bessel, Butterworth, etc.), and, if needed, sharpening filter. The filter must perform well for a variety 
of conditions, including interference from neighboring objects. This requires a tradeoff (not severe).
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Object Matched Filter 
(Lowpass) optimizes SNRi

Edge Matched Filter 
(some sharpening + 
Lowpass) optimizes 

Edge Location σ

Best practices are needed for designing practical matched filters.

w = 2;  w = 1
w = 2;  w = 1

https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/


Example 1a:  Exposure Index
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24 MP Micro Four-Thirds mirrorless camera

Vary Exposure Index (EI; proportional to analog gain) from 100 to 12800. 

With auto-exposure, increasing EI decreases the light reaching the sensor, 
but keeps the image Digital Numbers (DNs) relatively constant.
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Example 1b:  Exposure Index
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24 MP Micro Four-Thirds mirrorless camera, EI 100-12800

Less illumination →

w = 1 pixel

w = 5 pixels

w = 5 pixels

w = 1 pixel

As expected, performance improves with more illumination (lower EI).
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Example 2:  Image processing
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24 MP Micro Four-Thirds mirrorless camera, EI 800:  Edge Location σ (lower is better)

Gaussian blur (LPF)                      Sharpening-only                           LPF 0.7 + Sharpening 

w = 1 pixel

w = 5 pixels

w = 5 pixels

w = 1 pixel

Lowpass filtering (Gaussian blur = 0.7 & 1) makes some improvement. Sharpening-only causes 
some degradation. LPF + Sharpening shows no clear trend.

w = 5 pixels

w = 1 pixel

The effects of image processing are not dramatic, perhaps 
because the original edge was very high quality.
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Example 3:  Sharpening
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24 MP Micro Four-Thirds mirrorless camera, EI 800
0.7 pixel Gaussian blur + Sharpening 

w = 1 pixel

w = 5 pixels
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Key performance metrics SNRi and Location σ are poorly correlated with sharpness (MTF50, etc.). 
They and may even decrease.

MTF50 strongly increases 
with sharpening

Key performance metrics correlate 
poorly with sharpness.

Sharpness metrics (MTF50, etc.) are not good indicators of system performance. 
Extreme oversharpening, which boosts noise, should be avoided.



Example 4:  Exposure compensation
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16MP Micro Four-Thirds mirrorless camera. EI 160, f/5.6

Exposure compensation from -2 to 2 f-stops (dark to light). 
Each step of 1 f-stop doubles the illumination, improving the performance.
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mAP and IoU

We have introduced new information-based image quality metrics, most 
importantly information capacity, SNRi, and Location σ, that are 

• Closely related to each other, sharing the kernel, 𝑲 𝒇 = 𝑴𝑻𝑭𝟐 𝒇 /𝑵𝑷𝑺 𝒇 ,

• predict object and edge detection performance, 

• Should be better than traditional sharpness and noise measurements for 
predicting Machine Vision system performance (mAP and IoU).

Information capacity C, can be used to specify camera performance. 

Once the required value of C has been determined, a camera can be selected 
with the minimum number of pixels needed to meet the requirement, and then 
image processing (filtering) can be designed.

• Maximize speed

• Minimize power consumption, and

• Minimize cost

This should

https://www.v7labs.com/blog/mean-average-precision
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Signal averaging — N identical images can be averaged to improve the consistency (Signal-to-
Noise Ratio) of the results, which is improved by 𝑁 (3 dB for every doubling of N). Noise is 
increased by 𝑁 to keep results unchanged.

Notes

To do (a few of many)

• Verify the correlation between image information metrics, especially SNRi and 
Edge Location σ, and Machine Vision/Artificial Intelligence (MV/AI) 
performance metrics, such as Mean Average Precision (mAP) and Intersection 
over Union (IoU). Accuracy, speed, and power consumption are all critical. 

• We look forward to working with researchers on this topic. 
Grad students: There could be several PhD theses lurking here.

• Determine best practices for designing matched filters.

https://www.v7labs.com/blog/mean-average-precision
https://www.v7labs.com/blog/mean-average-precision


Thank you.
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Documentation for 
image information 

metrics is linked 
from

Please visit Imatest at booth at AutoSens booth 223.

www.imatest.com/solutions/image-information-metrics/

https://www.imatest.com/solutions/image-information-metrics/
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